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O N  S O F I C  S Y S T E M S  I 

W O L F G A N G  K R I E G E R  

ABSTRACT 

Topological Markov chains are invariantly associated with sofic systems. A 
dimension function is introduced for sofic systems, and a criterion is given for a 
sofic system to be properly sofic. 

1. Introduction 

Let "~ be a finite state space. We denote the shift on E z by S~, 

&((x,),~z) = (x,+,),~z. (x,),~z E :~z. 

The dynamical system that is given by a closed S~-invariant subset Y of E z and 

by the restriction of S,. to Y will be denoted by (Y, S~). A zero-one transition 

matrix (A (o-, o")),,.,,.~z determines a closed S~-invariant subset XA of E z, 

xA = {(x,);~zE:~: a ( x , , x , , ) =  1, i EZ}. 

The dynamical system (Xa, S~) is called a topological Markov chain. A dynami- 

cal system (Y, S~) is called sofic if it is the homomorphic image of a topological 

Markov chain. Sofic systems were first considered by B. Weiss [12, 13]. Since 

then they were studied by E. Coven and M. Paul [4, 5], R. Fischer [7, 8], B, 

Marcus [101, M. Boyle [3] and M. Nasu [11]. In this paper we attempt to 

elucidate further their structure. 

To every sofic system there are associated topological Markov chains, that 

admit the sofic system as a homomorphic  image of full entropy. Constructions of 

such chains have been given (see e.g. [4]). However,  it seems not to have been 

noticed that some of these constructions are canonical. In section 2 we associate 

canonically to a sofic system (Y, S~) two topological Markov chains that we call 

the past and the future state chains of the system. Combining these two, we 
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obtain another topological Markov chain canonically associated to (Y, S~) that 
we call the joint state chain of (Y, Sx). Also, if (Y, Sx) is topologically transitive 
and has periodic points dense, then we construct irreducible topological Markov 
chains that are canonical extensions of (Y, Sx). We call these irreducible 
topological Markov chains the past and the future finitary state chains of (Y, S~), 
and denote them by (X~ S~), S~ Sx)) and (X~ Sx), S~ S~)). There 
will also be a joint finitary state chain associated to (Y, Sx), denoted by 
(X~ S~), S~ Sx)). Our methods are similar to the ones found in [3, 7, 
8, 10, 13]. Compare here also the paper of I. Csiszar and J. Komlos [6]. The 

0 y  homomorphism of (X~ Sx), S~ Sx)) resp. of (X+( , Sx), S~ Sx)) onto 
(Y, Sx) will be denoted by p~ Sx) resp. by p~ Sx). There are also 
homomorphisms 

7r~ Y, Sx) : (X~ Y, Sx), sO-+( Y, Sx))---~ (X~ Y, Sx), S~ Y, Sx)), 

7r~ Y, Sx)" (X~ Y, Sx), S~ Y, S~))---> (X1( Y, Sx), S~ Y, Sx)). 

Recall that a homomorphism is called right (left)-resolving if an inverse image of 
a point is uniquely determined by the point together with any initial (final) 
section of the inverse image. The homomorphisms 7r'+'(Y, Sx) and p"(Y, Sx) are 

p"+(y, left-resolving and the homomorphisms 7r~(q~,Sx) and Sx) are right- 
resolving. Thus the top half of the following commutative diagram is reminiscent 
of the situation encountered by R. Adler and B. Marcus in [1]: 

(X%( Y, Sx), SO-+(Y, Sx)) 

(X~ Sx), S~ Sx)) (X~ Sx), S~ Sx)) 

(Y, s~) 

The extensions that we construct for topologically transitive sofic systems with 
periodic points dense are canonical in the sense that, given two such sofic 
systems (Y, Sx) and (I7, S,~) and a topological conjugacy 

u : ( Y, Sx)--> ( 17, S~), 

there exist unique topological conjugacies 
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- S " - ) '  0 u_ : (X'-~(Y, Sx), S"( Y, x)) (X_( Y, S~), S~(f/, S~)), 

/ X O  - u+: t +(Y, Sx), S~( Y, Sx)) ~ (X~( ~', S~), o - S +( Y, S~)), 

u_+: (X'-'+(Y, Sx), S'_'_+(Y, Sx))---~ (X~ S~), o - s_+( Y, &)), 

such that the following diagram is commutative: 

(x'_' +(Y, &), s" +(Y, &)) 

(x~ s,~), s"(Y, &)) 

p " ( Y, s ~ ) ~  

U 

S~) 

X " I -  +,Y, Sx), S"+(Y, S,_)) 

( Y ,  s ,~)  

U + 

(x'+(?, &), " - s +(Y, &)) 

~ ( ~ , s ~  ~ .  
/ 

e . . .  / 

/d U+ 

7r+( ?, S~) 

(x'_'(r s"c~ " - �9 _ ,  , & ) )  ( x ' + ' ( Y ,  &), s+(v, &)) 

o (Y,&) o"+(9,ss) 

' ' ~  (f~, ss) 

In [9] there were introduced past and future dimensions for topological 

Markov chains. In section 3 we extend these notions to sofic systems. We shall 

see that the range of the future dimension of a sofic system can be identified with 

the range of the dimension of its future state chain. In section 4 we apply this to 

give a criterion for a sofic system to be Markov. If q~o-.s~) is the automorphism 

that the sofic system (Y, Sx) induces on the range of its future dimension, and if 

ffcv, s~ is the zeta-function of (Y, Sx), then this result can be stated as follows: 

(Y, Sx) is Markov if and only if 

7 -1 ~o,,s~)(z) = Det (1 - q~v.s~l) �9 
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2. Some extensions of sofic systems 

Consider again a finite state space E. We first indicate some notation to be 

used throughout this paper. For the projection of Yz onto Eu.kl, j, k E Z, j =< k, 

we write Pu.~l, and for Pu.kj(x), x E Ez, we write also xlj.kl. Similar notation will 

also be used for other projections. For cylinder sets we employ notation of the 

following sort: 

z(~)={(x,),~zEXZ:x,=~}, o - ~ X ,  

and 

Z(a)={(x,),~z:Xu.k]=a}, a E X  u'k], ] , k ~ Z ,  j < k ,  

etc. 
Let now (Y, Sx) be a sofic system. We assign to every x_ ~ P~_~n(Y) a closed 

subset w+(Y, S~)(x ) of Pt,~(Y) by setting 

w+(Y,S~)(x_)={x+~Pl,~)(Y):(x_,x+)E Y}, i EZ.  

We are interested in the range of the mapping w+(Y, Sx). We set 

-~+( Y, Sx) = w+( Y, Sx)(P<-~.o](Y)), 

and also 
I 

In this way 

-=~'(Y, Sx)= o+(Y, Sx)(P,-~,n(Y)), i EZ.  

=_~'(Y,&)= s~'+'=_+(Y,&), i ~ z .  

Let for a suitable finite state space ~ and zero-one transition matrix 

(A (dr, 6''))~.~,z~,( Y, Sx) be a homomorphic image of the topological Markov chain 

(Xa, S~), the homomorphism being implemented by a one-block map �9 : ~--~ X. 

We denote then for x_ @ P<-=,oI(Y) by/~(x_) the set of all 6"o E ~ such that there is 

with 

It is 

to+( Y, Sx)(x-) = 

(1) 

(6.,)-~<,~o ~ P.~.oj(Xa) 

x_ = @(6.,))_~<,~o. 

U {(~(6.,)),<_,<=:(6.,),~_,<=~P~,=)(X/,),A(6.o,6.,)= 1}, 
Cro~&(x_) 

x_ E PI-=,ol(Y). 
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(2.1) LEMMA. E+(Y,  Sv) is finite. 

PROOF It is seen from (1) that there are at most [~] ! elements in E+(Y, S~). 
Q.e.d. 

We denote 

fL(  Y, S~) = {(o-, D ) E E x .~+( Y, Sz) : Z (o-) n D ~ Q}, 

and we define a transition matrix A+(Y, Sz) for the state space IL(Y,S~) by 

setting 

f 1 if D '  = S~P,L~,(Z(o-) n D), 
A+(Y, S~)((o', D), (o-', D')) 

t 0 elsewhere, 

(o-, D),  (or', D')  E f L (  Y, S~-). 

The topological Markov chain with state space 19.+(Y, Sz) and transition matrix 

A+(Y,S~) will be called the future state chain of (Y,S~). Instead of 

(Xa+~,.s~), S~+o..s~)) we write (X+(Y, S~), S+(Y, Sz)). Note that a block 

(o'~,D,)j~,<~@fl+(Y, SQ u'kJ, j, k E Z ,  j < k ,  

is admissible for A+(Y, S.~) if and only if one has that 

and with 

that 

(o',),~,~k @ Pu.k](Y), 

El =- Szi+lDi, i ~Z,  

El = Pl,.~)(Z((o't)i~,~,) N Ej), 

Further we have the following lemma. 

(2.2) LEMMA. Let 

(2) (or,, D, ),~z E X+( Y, S~), 

and let 

j < i < k .  

Ei = S~i+IDi, i E Z. 
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Then 

and 

PROOF. 

and if 

((r~)k=<,<~ E Ek, k E Z, 

Ek C co+(Y, Sz)((o'~)-~<,<k), 

By (2) one has for all j, k EZ,  j < k, 

(o',)r~i__<k @ Pli.kl(Ej) 

then one has by (2) that 

k E Z .  

y+ ~ Ek 

((o-j)ia,~k, Y,) E Pu.~( Y)- 

Use compactness arguments. O.e.d. 

We denote the projection that assigns to every (o'i, Di)~z E X§ S~) the 

point (o'~)~z E Y by p§ S~). This projection is in fact onto Y, and it has a 

Borel section z+(Y, S~) that is given by 

z+(Y,S~)(x) (x,, ' ' = S~ oJ+(Y,S~)(xt-~.o)),~z, x E Y. 

To see this, observe that 

oo+( Y, &)(x(-~,k~) = Ptk.~)Z(xtj.k)) n r Y, &)(x(_~.j)), 

i, k E Z ,  j < k ,  x E Y .  

Also, note that p+(Y, S~) is right resolving. 

(2.3) LEMMA. z+(Y, S~)(Y) is dense in X+(Y, S~). 

PROOF. 

Setting 

let 

be such that 

Let I EN,  and let (r be an A+(Y, Sx)-admissible block. 

Ei = S~+I Di, - I <= i <= L 

(on)-| E P(-~,~(Y) 

E_, = o~.(Y, &)( ( r  
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and let 

(tri)~i<~ @ EI. 

(2.4) LEMMA. 

PROOF. Let 

x = (x,)_~<,~o ~ P,-~.o~(Y) 

be such that/~(x_) contains a minimal number of elements. Denote for k E N by 

/~k the set of all ~o E ~, such that there is an ill-admissible block (d'~)-k=~o such 

that 

x, = qb(d-, ), - k _-< i _<- 0. 

By a compactness argument one has 

/X(x_) = N ~ .  
k E N  

Hence there is a ko E N such that 

/ i (x_)  = A~ o. 

We claim that (x,)-ko=,=~o is a finitary block. Indeed, for all x"  ~ P~-=.oI(Y) such 

that 

P~_,~,oj(X-') = ( x , ) _ ~ , ~ o ,  

Then (o~),~z ~ Y, and 

to+( Y, S~)(x~_~.q) = E,, - I <= i <-_ I. Q.e.d. 

Under the hypothesis, that (Y, S~) is topologically transitive with periodic 

points dense, more can be said about the projection p+(Y, S~). As we shall see, 

p+(Y, S~) is then one-to-one on a dense Gs, and at the same time we shall find 

that there is then in fL(Y, S,,) a unique minimal ergodic class under A+(Y, S~). 

For this we make some preparations. We say that a block a U PIj, kj(Y), J, k E Z, 

j < k, is a finitary block if to+(Y, S~) is constant on the set 

{x- E P,-=.kl(Y): Po.kj(x-) = a}. 

The set of finitary blocks in Pts.kl(Y) will be denoted by ,~Ij.~1(Y, S~). It is 

S ~ t s . k ~ ( Y , S ~ ) =  YtJ ,.k-q(Y, S~), i E Z .  

Also every block that contains a finitary block as a subblock is itself finitary. 

There exist finitary blocks. 
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one has 

s 

From this, since A(x-) is assumed to contain a minimal number of elements, one 

has 

s  '_) = s 

and therefore from (1) 

to,( Y, s ,  )(x ') = to+( Y, &)(x_ ). Q.e.d. 

We say that a point x E Y is F-finitary if for all i ~ Z there is a j < i such that 

xl,.n is a finitary block. We denote the set of F-finitary points by F,(Y ,  S,:). It is a 

G~. 

(2.5) LEMMA. Let ( Y, S~) be topologically transitive with periodic points dense. 

Then F , (Y ,  S,~) is dense in Y. 

PROOF. Let I E N ,  a EPt-q.n(Y), and let f be any finitary block of (Y,S~). 

Use the topological transitivity of (Y, S~) to find j < - I and k > I and a block 

b ~ PIj.kj(Y), that contains f as a subblock, and such that 

b1-1.11 = a. 

Every periodic point in Z(b )  is an F-finitary point in Z(a) .  Q.e.d 

For a finitary block f E  o~ts.k~(Y,S,:), j, k E Z ,  j < k, we set 

to,(y, &)if) = to+(Y, &)(x_), 

(2.6) LEMMA. 

Ip . (Y ,S~)  '{x}l = 1, 

PROOF. Let 

where 

x_ E z q ) n  P, .k , (y ) .  

x ft. F~( Y, S~). 

(x, ,D,),~zE X , (Y ,S~) ,  

x ~ F~(Y, &). 

Let j, k c Z, j < k, be such that xu.k) is a finitary block. Then necessarily 

Dk = S k~ -~ to, ( Y, S~)(xu.k)). Q.e.d. 
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We denote by _+(Y, S,~) the set of all sets D in _=+(Y, S~_) such that for some 

finitary block f E ~l-,.,,l( Y, S~), I E N, 

D = w+(V, S~)(f), 

and we set 

0 ~ 0  I]+(Y, S,~) = {(o-, D)  E I]+(Y, S,_): D E _+(Y, S~)}. 

(2.7) LEMMA. Let ( Y, S~) be topologically transitive with periodic points dense. 
Then fL~( Y, S~) is the unique minimal ergodic class in fL( Y, S~) under A +( Y, S~). 

PROOF. We have to show that for all (o '~ ,D)EfL(Y,S~)  there is for some 

I E N  a finitary block (o-~) ,~  such that 

Z((~r,),<,<,) A D #  0. 

To see this, let x E P~-~.0~(Y) be such that 

U = og+(Y, S,~)(x_). 

Let f be any finitary block. Let then k ~ N, and use the topological transitivity 

and the density of the periodic points to find I ( k ) E N  and a block a~k~E 

PI kJik)l(Y) such that 

Pt_~,,,l( a '~ ~) = P~_~. , , j (x_)  

and such that Pl~.~tk~](a ~k~) contains f as a subblock. Recalling that (Y, S~) is the 

homomorphic image of (Xa, S~) one sees that one can have here I(k) indepen- 

dent of k. A compactness argument yields then the lemma. Q.e.d. 

The restriction A~ of A+(Y,S~) to the set f~(Y,S~)  produces an 

irreducible topological Markov chain that we denote by (X"+(Y, S~), S~ S~-)), 

and that we call the future finitary state chain of (Y, S~). 

Let (Y, S~) be topologically transitive with periodic points (2.8) THEOREM. 

dense. Then 

PROOF. Let 

p+(Y, s~)(x"+(Y, s~)) = y. 

a ~ Pl-~.n(Y), I E N, 

and let f be a finitary block. Use the topological transitivity and the density 

of the periodic points to find an x E Y such that xt-~.n contains f as a subblock 
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and such that 

Then 

X l - l , q  = a .  

i - I  (x,, sx o,+(Y, s~)(x,_~,)))_,~,~_, 

is an admissible block for A ](Y, S~). It follows that p+( Y, Sz)(X](Y, Sx)) is dense 

in Y and the theorem is proved. Q.e.d. 

We denote the restriction of p+(Y, Sx) to X~ S~) by p"+(Y, S~). 

(2.9) COROLLARY. Let (Y, Sx) be topologically transitive with periodic points 
,~o dense. Then every element of =+(Y, Sx) contains an element o[ _+(Y, Sx). 

PROOF. 

let 

Let D E E+(Y, Sx), and for some 

(x,)-~<,_<~ E P,_~,I(Y) 

D = to+(Y, Sx)((xi)-~<,~o). 

By Theorem (2.8) there is then a 

x 0 X o ( ,, D,)-=<,__<o E P,-=,ol( +(Y, Sx)). 

If now 

n D ~ y+ E SxPo.=)(Z(xo ) o), 

then by Lemma (2.2) also y+ @ D. Q.e.d. 

Reversing the direction of time in the constructions that we have carried out 

so far leads to analogue objects, where the place of the "future" is now taken by 

the "past". For these objects we use similar notation with a minus sign appearing 

instead of the plus sign. The topological Markov chain (X_( Y, Sx), S_( Y, Sx)) we 

call the past state chain of (Y,S~) and the topological Markov chain 

(X~ Sx), S~ S~)) we call the past finitary state chain of (Y, Sx). 

Taking the fiber product of (X_(Y, Sx), S_( Y, Sx)) and (X§ Y, Sx), S+(Y, Sx)) 

with respect to the homomorphisms 

p_( Y, Sx) : (X_( Y, S~), S-( Y, Sx))---~ ( Y, S~), 

p+(Y, S~) : (X+( Y, Sx), S+(Y, Sx))--> (Y, Sx), 
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produces a topological Markov chain, that we call the joint state chain of (Y, Sx) 
and that we denote by (X_§ Sx), S_+(Y, Sx)), 

X_.(Y, Sx) = {(x,, D. ,  D~),~z �9 X z x ~_(Y, Sx) x ~,+(Y, Sx): 

(x,, D~-),ez �9 X_(Y, S~), (x,, D:),~z �9 X.(Y, Sx)}. 

Also, taking the fiber product of (XO-(Y, Sx), SO-(Y, Sx)) and 
(X.r  c ~ SO(Y, Sx)) with respect to the homomorphisms +~, , o x ) ,  

po( Y, Sx) : (XO-( Y, S~), S"( Y, Sx)) ~ ( Y, Sx), 

pO(y, S~):(XO(Y, S~), sO(Y, Sx))---~ (Y, Sx), 

produces a topological Markov chain, that we call the joint finitary state chain of 
(Y, Sx) and that we denote by (X~ Sx), S~+(Y, Sx)), 

XO-+(Y, Sx) = {(x,, D j-, D~),~z �9 X z x _=O-(Y, Sx) x ---0(Y, Sx): 

(x,, D~-),~z �9 X~ Sx), (x,, D~-),ez �9 XO(Y, Sx)). 

The properties of the projections 

7r+(Y, Sx): (X +(Y, Sx), S_+(Y, Sx))--> (X+(Y, Sx), S+(Y, Sx)), 

0 0 -"-> X 0 7r§ S~) : (XO-+( Y, Sx), S-.(Y, Sx)) ( .(Y, Sx), S~ Sx)), 

7r_( Y, Sx) : (X_.( Y, Sx), S-+( Y, Sx))---> (X_( Y, S~), S-( Y, S~)), 

~ro-(Y, S~): (x~247 s~), s"_§ s~))~(x~ &), S~ S~)), 

can be read off from the properties of the projections p (Y, Sx), po-(Y, Sx), 
p§ Sx), p~ The left (right) resolving property of p-(Y, Sx) and 
p0_(y, Sx)(p+(Y, Sx), and pO(y, Sx)) implies the left (right) resolving property of 
7r§ Sx) and ~r~ Sx)(Tr-(Y, Sx)and 7r~ 7r-(Y, Sx)and 7r+(Y,S~) 
possess Borel sections or_(Y, Sx) and o-§ Sx) that are given by 

o'_(Y, S,0((x,, D~-),~z) = (x,, D~-, D?),~z, 

(x,, D :~),~z = r+( Y, Sx)((x,),~z), 

(x,, D/),~z �9 X_(Y, Sx) 

o'§ Sx)(x,, O ?),~z) = (x,, O;-, O~-),~z, 

(x. D/),~z = r_( Y. Sx)((x,),~z). 

(x,, D~),~z e X§ Sx). 
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7r_(Y, S~) is one-to-one on the set 

{(x,, D / ,  D,+),.z @ X_+(Y, S~) : (x,),~z ~ F+(Y, S~)}, 

and 7r.(Y, S~) is one-to-one on the set 

{(x, D , ,  D~),~zX_+(Y, Sz) : (x,)~z E F_(Y, Sz)}. 

We also remark that the closure of the set 

o-_(Y, Sz)'c+(Y, S~)(F (Y, S~) f3 F§ Sz)) 

= o-.(Y, S~)~-_(Y, S.z)(F-(Y, S.~) fq F+(Y, S~)) 

is a basic set of (X~ S~), S~ Sz)). 

In the remainder of this section we consider two topologically conjugate sofic 

systems (Y, S~-) and (79, S~). We let 

u :(Y, s~)- ,  (?, s~) 

be a topological conjugacy that together with its inverse is implemented by 
(2N + 1)-block maps ~b and ~, 

tp : PI-N, Nj(Y)--~ -~, 

: PI-N, NI( 79)--* E. 

Thus 

(3) u x  = ( ~ b ( X t , _ N . , + N ] ) ) , ~ z ,  (X,)~z E Y. 

(4) a~ = (~(X[,-N.,+m)),~z, (:~),~z E Y. 

(2.10) LEMMA. 

PROOF. 

uF+(r, S~) = F+(79, S~). 

Let x E F+(Y, Sz). We show that ~ = ux is in F§ S~). Let i E Z and 

let xtj.,~ be a finitary block of (Y, S~), i - j  > N. We want to show that ~I~-,~.,+m is 
then a finitary block of (79, S~). For this, let 

3~-', .~'-' E Pc ~,i+m(Z(-rtJ N.,+N)) A 79). 

We have to show that then 

(5) 0,4 79, s~)(~'_) = ,o+(79, s~)(~"_). 

Let 

;+ E 0~+(79, s~)(~'), 
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and set 

y+ = Pv~)(u-'($'_, ~)+)), 

and also let x'_, x"_EPt_~.~(Y) be given by 

Since i - j > N, by (4) 

and also 

x'- = (~(PIk-N,~*NJ(~'-))-~<k~,, 

x" = (t~(P[k-N,k+Nl(X"))-~<k--<,- 

y+ ~ ~.(Y,  s~)(x') 

(6) x'_, x'_' E Z(xu.,~), 

and, since xu., ) is finitary for (Y, S~), 

y+ E ~o+(Y, S~)(x"-). 

Therefore (x", y+) C Y, and, again since i - j > N, one has by (3) and (6) that 

u(x", y+) = (~ ' ,  y.) .  

Thus 

y+ ~ ,o+(?, s~)(~'_'), 

and (5) follows. 

Our next task is to construct a topological conjugacy 

u+ : (X+(Y, S~), S+(Y, S~))--~ (X+(Y,  S~), S+(Y, S~)). 

.To describe this conjugacy, let 

x @ Y, ( x , , D , ) , ~ z E X + ( Y , S ~ ) ,  

set ~ = ux, and 

Ei = S~+IDi, i E Z. 

By Lemma (2.2) we can set 

E;_N = {y+ E E,-N : P~-~,)(U(X~-~.,-~, y+)) = gr 

E, = {PI,.~)(u(xr y+)): y+ ~ E~-N}. 

(2.11) LEMMA. Let i E Z ,  

Q.e.d. 
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(7) 

and let 

be such that 

(8) 

Set 

(9) 

Then 

PROOF. 

such that 

(lO) 

and 

(11) 

M > 3 N ,  

x '- @ Pc-~.,-M~( Y)  

E,_~ = ,o4 Y, &)(x  '_). 

2~ -' = P,-=,,-M+m(U (x '_, x t, +M,~))). 

~:, = ,,,+(?, &)(~ ' ,  x,-M.~.,3. 

For the proof, let first )7+ ~ P,. This means that there is a y+ E E~-N 

PIi,~)(U (xc-~.i-m, Y+)) = )7+, 

P[i-2u, i)(u (X,-=,i-N,, y+)) = Y[i-2N, i). 

Using (3) one has from (10) that 

Pl,.~(u (x ' ,  x l,-M.,-m, Y+)) = )7+ 

and using (3) and (7) one has from (9) and (11) that 

Pt-=.o(u(x'-, xt, M,,-m, Y+)) = 0~',  2~1, M+u,i,), 

and one sees that 

(12) )7+ ~ ,o.(r s~)(~_, ~,-M+N.,,). 

On the other hand, if (12) is assumed, set 

(13) y. = Pt,-,~m(u-'(2 '-,-~V-M*m), )70, 

and have from (4) and (9) that 

P.~ , -N) (u - ' ( x  '-, X,-M.N.,~, )7.)) = (X '-, xt,-M.,-,O- 

Hence,  by (8), 

y .  E Ei-N. 
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Also by (13) and (12) 

and 

Therefore 

Pv,=)(u (x(-=,,-m, y+)) = )7+ 

PV-2N.,~(U (X(-=.,-m, y+)) = XV-2N.,). 

(2.12) LEMMA. 

)7+ E/~i. Q.e.d. 

Ek=Pik>~(Z(Ytj.k~)AEj), ,~k@Z,  i < k .  

PROOF. Use Lemma (2.11). Q.e.d. 

/~ is determined by E~-N and by xv 2N.i-NJ. Therefore, as is seen from Lemma 

(2.12), by setting 

L)~ = S~-~/~,, i E Z 

we assign to the point (xi, D~)~z in a continuous and shift-invariant manner a 

point 

u+((x,, D, ),~z) = (~,,/), ),~z E X+( Y, S~). 

(2.13) THEOREM. U+ is a topological conjugacy of (X+(Y, Sx), S+(Y, S,:)) onto 
(x+(f', s~), s+(f', &)). 

PROOF. Set 

/~', = {)7+ e / ~ ,  : e .~ . ,+N~(u  '(~(-~.,), )70) = x(_~,+N~}, 

We show that 

To see this, let first 

This means that there is a 

E~+N = Ei+N, i ~ Z. 

y+ ~ Ei+N. 
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such that 

and 

Then 

(14) 

Further there is a 

such that 

and 

| - 

y+ = Pli+N.~(u (x~-~,,, )7+)) 

P l i _ N , i + N ) ( b  i - 1  - (x~_~,~, y+)) = XV-N.,§ 

1 - u -  (x~_~ ,~, )7+) = (x~_~,+.~. y+). 

y+ E Ei-N 

)7+ = Ptim(u (xc ~.,-m, )7+)) 

Pt,-2N.i)(u(xc-~., m, )7+)) = xt,-2N, o. 

Since u is one-to-one it follows from this and from (14) that 

PIi-N.,+N~)7+ = XV N.,+m, PI'+N.~)7+ = Y+, 

and this means that 

y .  E Pv+Nm(Z(x , -N . ,+m)  f'l E,_~) = E,+N. 

On the other hand, if 

y+ E Ei+N 

then 

Setting 

(xli-N,i+m, y+) E E'i-N. 

)7, = Pli.=)u (xt-=.i+m, y+), 

one has then again (14) and it follows that 

)7+ E/~ ,  y+ ~/~i+~. 

Interchanging (Y, Sx) and (I7, S~) and repeating the construction one sees that 

u+ is a topological conjugacy as claimed. Q.e.d. 
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(2.14) THEOREM. U+ is the unique topological conjugacy of 
(X+(Y, S~), S+(Y, S~)) onto (X+(Y, St), S+(17, S~)) such that 

up+( Y, S~) = p+( Y, St)u+, 

u+z+(Y, S~) = 7+(Y, S~)u. 

PROOF. Let x E Y ,  Y = u x .  That 

u+~'+( Y, S~)(x) = u+((x,, to+( Y, S~)(xt-~.,~)),~z) 

= ((~,, o,+( ~. s~)(x,_~,~)),~z) = ~+(?. st)(x).  

follows from Lemma (2.11). The uniqueness statement is a consequence of 
Lemma (2.3). Q.e.d. 

(2.15) LEMMA. Let (Y, Sx) and ( Y, S~) be topologically transitive with periodic 
points dense. Then 

u+X':(Y, s~) = x 1 ( ? ,  s~). 

PROOF. Use Lemma (2.7) and Theorem (2.13). Q.e.d. 

For topologically transitive sofic systems (Y,S~) and (~', S~) with periodic 
[! {J 

points dense we restrict u+ to X+(Y, S~) to obtain a topological conjugacy u + of 
(X'+' ( Y, S~), S'~'( Y, S~)) onto (X+'( Y, St), S'+'( I 7, S~)). 

(2.16) COROLLARY. Let (Y, Sx) and (Y,S~) be topologically transitive with 
periodic points dense. Then u] is the unique topological conjugacy of 
(X](Y, S~), S](Y, Ss)) onto (X'+~(17, St), S"+(Y, S~,)) such that 

o = p+(Y, S~)u+. up + ( Y ,  S~) " - 

PROOF. Apply Theorem (2.15) in conjunction with Lemmas (2.5), (2.6) and 
(2.10). Q.e.d. 

Reversing the direction of time one produces by the same construction a 

topological conjugacy 

u_:(X_(Y,S~), S_(Y,S~))---~(X (Y, St), S (17, S~)), 

and its restriction 

u~ : (X~ Y, S~), S"_( Y, S~))--* (X"( Y, S~), S"( Y, St)). 

One has then also a topological conjugacy 

u_+ : (X_+(Y, S~), S_+(Y, S~))---~(X_+(Y,S~), S_+(17, S~)). 
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Here u_+ carries a point 

into the point 

that is given by 

(x,, D?, D~),~z E X_+(Y, S~) 

(s DT, D~),~z ~ X_+('~, S~) 

(s = u_((x,, D~-),~z), 

(x,,/)~),~z = u+((x,, D;-),~z). 

By restricting u_+ one has finally a topological conjugacy 

u~ : (X~ Sx), S~ Y, S~))--~ (X~ Y, S~), S~ Y, S~)). 

Uniqueness statements analogous to the ones in Theorem (2.15) and Corollary 

(2.16) hold for u_+ and u~ 

3. Dimension 

Consider again a finite state space ~. For an Sx-invariant set Y C E z, and for a 

set H C Y we denote by W-v(H) ( W ~ H ) )  the set of all points in Y that are 
negatively (positively) asymptotic to a point in H. For a zero-one transition 
matrix (A (o-, o-'))~,.,Ex, we denote 

and 

(15) 

Then 

(16) 

E[A ] = {o" ~ E : [ {(o'~ )-=<,~o E Pt-= ol(Xa ) : O'o = or} I < oo}, 

R,, [A ] = I {(o'~ )-| E P(-| ) : O'o = o'} l, o" E E[A ]. 

(3.1) LEMMA. Let H C Xa be S~-invariant and such that 

W+x,,(W-xA(H)) = Xa. 

[ {(o-~)-=<,~o E P(_| = o'}[= R . [ A  ], 

and if or E "2 - E[A ], then 

{(tr, )-=<,~o E P(-=.Ol(WxA(n)) : cro = or} 

is an infinite set. 

o- E ~ [ A ] ,  
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PROOF. Denote by Q the set of all points x in Xa, necessarily periodic, with 

the property that every symbol that appears in x has a unique predecessor under 

A. If for ~r E 3~[A ], 

then 

(~r~)-=<,_-<o E P(_. ol(Xa ), o'o = or, 

(o-,)_~<,~0 e P(-~.oj W-x,,( O ). 

(15) implies that H contains for every x E Q an element that is negatively 

asymptotic to x. This proves (16). 

On the other hand, if ~ E E - I s  then one has two periodic points yl, 

yz E XA, such that 

y2 ~ w;~.({y,}), 

and such that there is a 

(m)-~<,=~o E Pc-~ ol(Xa ), cro = ~, 

that is negatively asymptotic to y2. By (15) 

y, ~ Wx,,(H), 

and one constructs an at least countable infinity of points 

(cr,)_=<,~o E P(-~.o](W-x,~(H)), O'o = o'. Q.e.d. 

Condider now again a sofic system (Y, S~), and let H C Y be a finite or 

countably infinite S~-invariant set. Write 

W~H)= U U {yEY:y,=h,,i<=-n}, 
n~N (hi)i~zEH 

and put on W~(H) a topology that turns it into a o--compact space, by using on 

the sets 

{ y E Y : y , = h , , i < = - n } ,  n ~ N ,  (h,),~z E H 

the compact topology that they inherit from Y, and by furnishing W ~ H )  with 

the inductive limit topology. 

One introduces next a group G ,  of homeomorphisms of W~(H), that we call 

the group of uniformly finite dimensional homeomorphisms of W~(H). Here a 

homeomorphism v of W~(H) is in G ,  if and only if there is an M E N such that 

PIM.=)@Y) = YW.=), y E W~H).  



324 w. KRIEGER Isr. J. Math. 

Consider next the Boolean ring q~. of compact open subsets of W ~ H ) .  The 

group G .  acts on .~n and we obtain a (future) dimension function 6 .  which is 

the quotient map of q~. onto the orbit space of this action. The range of 6 .  

carries an algebraic structure, where for 7. 7 ' E  6.(q]H), 

3 , + 7 ' = 8 . ( C U C ' ) ,  C E 3,, C' ~ 7', C N C' = ~.  

H being S~-invariant we have also W-v(H) Sz-invariant, and 

S~G~S~ ~ = G.. 

We have therefore an automorphism ~p. of ~ ( ~ . )  induced by S~. 

To specify further the pair ( 8 . ( ~ ) ,  q~.) we make now a suitable choice of the 

set H. Say that an S~-invariant set H C Y is dimensionally covering for (Y, S~) if 

H is finite or countably infinite and if for all D ~ E.(Y,  S~) there is an 

such that 

x- E P.-~.oI(W-~H)) 

to+( Y, S~)(x_) = D. 

We want to show that (SH(~n), CH) does not depend on the choice of H, as long 

as H is dimensionally covering. For this we have the following two lemmas. Here 

we set, for (tr, D)E~+(Y,S~) ,  

~ , ( a ,  D )  = {(tr~)_.~,~t E P,-~,tL(W~H)): (r = trt, D = ~o+(Y, S~)((tr,)-~<,~0)}. 

(3.2) LEMMA. Let H be dimensionally covering for (Y, S~). Then 

] ~,~(cr, V)l -- R,~.D~IA+(Y, Sx)l, (or, D) E O+(Y, S~)[A+(Y, Sx)], 

and if 

(~, D) e n+( Y, &) - ~.(  V, &)[A.( V, S~)], 

then 5g.(~r, D) is an infinite set. 

PROOF. That H is dimensionally convering for (Y,S~) means 

r+(Y, S~)(H) is S.(Y, S~)-invariant, and that 

+ - " r  W x§ W x+,v,s~( .( Y, S~)(H))) = X. (  Y, S~). 

Also, observe that for all (o-, D ) E  fL(Y,  S~) the mapping 

(o-~)-~<~zl --~ (cry, o~+( Y, S~)((orj)_~<j<~))_~<~l, ((a,)-.<~_~1 E 5r/". (~r, D)),  

thai 
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is one-to-one and onto the set 

{(o',, D, )_.<~.~ ~ P,-~.,I( Wx.,r.s~,iz.( Y, S~_)H)): (a',, D~) = (or, D)}, 

and the present lemma follows from Lemma (3.1). Q.e.d. 

(3.3) LEMMA. Let H and H' be dimensionally covering sets for (Y, S~). Then 
there exists a one-to-one and onto mapping 

such that 

(17) 

PROOF. 

onto mappings 

., : W ~ ( H ) ~  W,~(H') 

Pt,=)(w(x )) = xt, ~, x E W-v(H). 

By Lemma (3.2) we have for all (o, D )  E IL(Y,  S.~) one-to-one and 

zr (o', D ) :  :7/.(o', D)---~ .%. (o-, D).  

Define the mapping w by requiring that 

w(Z(x_))=Z(Tr(cr, D)(x_)), x -E~ , (o ' ,D) ,  (o',D)EUI.(Y,S~), 

and by stipulating (17). Q.e.d. 

View the mapping w of Lemma (3.3) as a one-to-one and onto mapping 
w : c~. ~ ~...  Then 

w ~ . w  -~ = % .  

6.(w -'S._wC) = 6.(&C),  C ~ c~.. 

Therefore the pair (6.(C.),  q~.) does not depend on the choice of the dimen- 

sionally covering set H, and we write for it (6o.,s~)(%v.s~), q~o..s~). The definition 

of this pair is in fact intrinsic. To see this, consider again two topologically 

conjugate sofic systems (Y,S~), (I?, S~), and let 

u : ( v , s ~ ) - - , ( ~ , & )  

be a topological conjugacy. For a finite or countably infinite set H C Y the 

definition of the topology on W-v(H) is intrinsic in the sense that u, when 

restricted to W~(H), becomes a homeomorphism uH of W~H)  onto W~(uH). 
The definition of the group of uniformly finite dimensional homeomorphisms is 

intrinsic in the sense that 

u.qg.u ;~J = ~. . .  
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Finally the notion of a dimensionally covering set is intrinsic as is seen from the 

following lemma. 

(3.4) LEMMA. H is dimensionally covering for (Y, S,_) if and only if uH is 
dimensionally covering for ( Y, Ss). 

PROOF. A finite or countably infinite set H C Y is dimensionally covering for 

(Y, S~) if and only if 

Wx+,v,s~,( W-x.,v,s~(r+( Y, S~)H)) = X.(  Y, S~). 

Apply Theorem (2.14). Q.e.d. 

(3.5) THEOREM. There is an isomorphism of pairs 

PROOF. Let (o', D)  @ E~.(Y, S~). Consider a dimensionally covering set H C 

Y. Let i ~  Z. 

x_,x'_ ~ S~'+'Y{.(o-,D ): 

We claim that 

8cy, s~)(Z(x-) n Y) = 8~y.s~)(Z(x'-) n Y). 

In fact, an element v of ~3, that carries Z(x_) n Y o n t o  Z(x'_) n Y is defined by 

setting 

v(Z(x_) n Y)= Z(x'_) n Y, 

P~,.~)(vy) = y~,.~), 

vy = y, y ~ W y ( H ) -  ((Z(x_) U Z(x'_)) n Y). 

It is therefore meaningful to define elements & (m D )  of So.,s~)(~,.s~) by setting 

E e'+l~ (o',D),(o' ,D)EfL(Y,S~), i EZ.  &(o',D)=3o..s~(Z(x_)n Y), x o5 , 

Every element of ~ ,  is a finite disjoint union of sets of the form Z(x_)n  Y, 
x_EP~_~,)(Wy(H)), i EZ.  Therefore the &(~ ,D) ,  i E Z ,  (o',D)~I2+(Y,S~) 
span the dimension range. Moreover writing a Z(x_) N Y, x_ ~ Pc ~ ~)(W~(H)) as 

a disjoint union of cylinder sets of the form Z ( y _ ) n  Y, y_EP~_~1(W-v(H)) 
shows that 

&_t(cr, D)  = ~ A.(fo',D),(o",D'))&(o",D'). 
(o",D')EfI+( Y, SI.) 
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From this it is seen that 8~v.s~)(~gtr.s~)) is a segment of an ordered abelian group, 
the (future) dimension group of (Y, &), that is given by 

lim ~ (Z "§ Z+n*~r's~)), 
A+(Y, Sg) 

Ctr.s~) is given by the automorphism that A§ &)T induces on this direct limit. 

The description of the pair 

is identical (compare [9]). Indeed, the isomorphism that carries one pair into the 
other is obtained by mapping &(o-, D)  into 

r (X+tY, S~.),S+tY, Ss Y)), 

x_ES~'+'5((o-,D), ( m D ) ~ f L ( Y , S ~ ) ,  i ~Z .  Q.e.d. 

Note that, with the notation 

Z+ if (o-, D) E fL(Y, S~) - fL(Y, S~)[A+(Y, S~)], 

(m D) = [0, Rr +( Y, S~)]], if (o-, D ) E IL( Y, S~)[A +( Y, S~)], 

the dimension range of (Y, Sx) as such is given by 

lim ~ ~(tr, D). 
A+(Y, STs T (cr, D)• +(Y,Ss 

Also note for completeness that reversing the direction of time in the 
construction yields an analogue (past) dimension. 

Given two topologically conjugate sofic systems (Y, &) and (I  7, S~) one has 
from Theorem (3.5) that A§ &) and A+(17, S~) are shift equivalent (compare 
theorem (4.2) of [9]). The topological conjugacy of (X§ S~), S§ &)) and 
(X§ S~), S§ is therefore a consequence of William's conjecture [14]. 
We have seen in Theorem (2.14) that this consequence holds. 

4. Proper soficity 

Consider again a fnite state space s and a sofic system (Y, S~). Denote by 
C(Y, S~) the set of all x E Y that possess a finitary subblock. 

(4.1) PROPOSITION. (Y,S'z) is Markov if and only if Y = C(Y,S~). 

PROOF. If every point in Y possesses an F-finitary subblock, then 
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Y= U U zff). 
/<0<k f~ ~D,M( Y, Sz} 

Hence, by compactness, we have an N ~ N such that every block in PI1,NI(Y) is 

F-finitary. One defines then a topological Markov chain with state space 

PI1.NI(Y) and transition matrix B given by 

B(b 'b ' )=  f 1 if bt2.N1 = b[LN-q, Z ( b ; , ) n  o~.(Y,S~_)(b)#Q, 

l 0 elsewhere, b , b ' E  PILNI(Y)- 

The mapping 

x -~ (xv.,+m),~z (x E Y) 

is then a topological conjugacy of (Y, S~) onto (XB, Se~,.,,~v~). 

(4.2) LEMMA. 

such that 

PROOF. 

(18) 

Set 

Q.e,d. 

If ( Y, S~) is properly sofic then there exists a periodic point y E Y 

I p;'{y}l > 1, 

If (Y, S~) is properly sofic, then we have by Proposition (4.1) a point 

x E Y - C . ( Y ,  S~). 

In fact, it is 

Let now i~ @ Z be such that 

I r , .~  =In ,  I. 

r,+, = {P[, ... .  )(Z(xt,,,+,)) N E)" E ~ F,}. 

n E N .  

lr, i z, 

F, = N ~o+(Y, S~)(Z(xu.,))), i @ Z. 
i<i 

We claim that for all i ~ Z the set F~ contains more than one element. For a 

proof, assume that for some io, F~ contains only one element. Then there exists a 

j < i0 such that 

I {to+(Y, S~)(Z(xu,~))) I = 1, 

This would mean that xu,~) is a finitary block, a contradiction to (18). 

We observe further that 
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There a r e  i2, i3 ;> ij, i2 < i3, such that 

i2- i  3 (19) % = xi3, Fi2 = S,~ -F i  3. 

Let y E E  z be given by 

Y~2+ko~-~2)+t = %+t, k @ Z, 0 _--- 1 < i3 --  i2. 

It follows from (19) that y E Y. Also by (19) we have for every E C F~2 an ME ~ N 

such that 

E = S~EPI,~+ME,~)(Z(x[,2,,2+M~)) n E), 

and we produce for every E E F~ a point (y~, D~)~z E X+(Y, S~) by setting 

D~+kM~+,. = S~PIi . . . . .  )(Z(xt~,~+,,))NE), k EZ,  0 =  < m <ME. Q.e.d. 

(4.3) PROPOSITION. The following are equivalent: 
(a) (Y, S~) is properly sofic. 
(b) There exists a non-F-finitary point. 
(c) There exists a non-F-finitary periodic point. 

PROOF. Use Proposition (4.1) and Lemma (4.2) in conjunction with Lemma 

(2.6). Q.e.d. 

(4.4) THEOREM. (Y, S~) is markov if and only if 

(20) ~o..s~(z) = Det (1 - zqhy.s~)) -1. 

PROOF. r+(Y, S~) assigns to every periodic point of (Y, S~) a periodic point of 

(X+(Y, S~), S+(Y, S~)) with the same period. By Theorem (3.1) we have that (20) 
implies that all periodic points of (X+(Y, St.), S+(Y,S,~)) are in the range of 

"r+( Y, Sz). 
Assume that (Y, S~) is properly sofic. Then we have by Lemmas (4.1) and (4.2) 

a periodic point y of (Y, S~) that has under p+(Y, S~) more than one inverse 

image. One of these inverse images is equal to r+( Y, S~)(y ), and the others 

cannot be in the range of r+(Y, S~). Thus (20) cannot hold. 
If ( Y, S~) is Markov then (20) is the formula of Bowen-Lanford [ 2 ] .  Q.e.d. 
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